factors affecting bronchial tone(airway radius) :

- a) smooth muscle: smooth m. contract →↓airway radius →↑resistance
 Smooth m is controlled by :
 - autonomic control:
 - parasympathetic control: parasympathetic nerve fiber by vagus nerve
 → release acetylcholine(Ach) → binds to M3 muscarinic receptors
 → bronchoconstriction → ↓ airflow
 - sympathetic system : norepinephrine (sympathetic fiber terminal) and epinephrine (adrenal medulla) → bind β2 adrenergic receptors → brnonchodilation → ↑ air flow
 - local factors :→airway smooth muscle contraction →bronchoconstriction
 - o local irritants and allergens
 - o histamine and inflammatory mediators
- b) lung volume
 - high volume : radial traction : because airways are tethered to surrounding alveoli , when alveoli inflate→ force airways to dilate→↑airway radius→↓resistance→↑airflow
 - low volumes : \downarrow radial traction $\rightarrow \downarrow$ airway radius $\rightarrow \uparrow$ resistance $\rightarrow \downarrow$ airflow
- c) Airways cooling : inhalation of cold air \rightarrow bronchoconstriction
- d) circadian rhythm :
 - maximum constriction of bronchial muscle occurs at 6 am maximum dilation occurs at 6 pm .

Work of breathing :

- is the work done by respiratory muscles during breathing to overcome the resistance in thorax and respiratory tract
- At rest : it accounts for 5% of total energy .
- During exercise: energy required \uparrow as much as 50 folds .
- Work of breathing is Insignificant in healthy persons but in some patient with respiratory diseases →lung expansion is difficult → ↑ work

- work of breathing can be divided into three fractions :
 - 1. compliance or Elastic work : 65 % required to counter lung recoil
 - 2. tissue or Viscous resistance work :moving inelastic tissue 7%
 - 3. Airways resistance work : 28%
- Work of breathing 个in :
 - COPD : high airway resistance.(个resistance work).
 - Pulmonary fibrosis : stiff lung (个elastic work).

Effects of gravity :

Lungs has a mass →regional differences(apex Vs base) in intrapleural pressure and alveolar volume . When the lung positioned vertically it is like a coil .

- Apex : Alveoli are forced to inflate by the pulling effect of underlying lung tissue weight (coil is widely spaced at the top)and intrapulmonary pressure is more negative (- 10 cmH2O) . lungs at the apex are functioning near the top of pressure –volume curve (further inflation is limited) .
- Base: alveoli are compressed by overlying lung tissue weight ,intrapleural pressure = -2 cm H2O.Lungs at the base are functioning near the base of the pressure-volume curve (further expansion is favored).

dead space : two types

- 1. **Anatomic dead space** : volume of air in the respiratory tree that does not participate in gas exchange process during respiration (conducting zone) it approximately equals to the body weight in pounds
- 2. Physiological (Total) dead space :
 - is the total volume of air that does not participated by gas exchange. it equals to anatomic dead space + alveolar dead space (dead space generated by non functional alveoli) due to
 - a) over inflation
 - b) blood gas interface is damaged
 - c) blood flow to these alveoli is poor(hypoperfusion) or absent.
 - In healthy person it equals to anatomic dead space.
 - In diseased lung the physiological dead space could be 1-1.5 L> anatomic dead space

Respiratory Minute volume RMV: is the total volume of air inhaled or exhaled per minute during quite breathing

MRV = TV X breaths $/min = 500 \times 12 = 6 L/min$

<u>Alveolar ventilation V_A </u>: is the volume of air that reaches the gas exchange area (respiratory zone) per min.

V_A = (tidal volume – dead space volume)X breath /min

- = (500 ml 150 ml) X 12
- = 350 X12 = 4200 ml /min
- Rapid shallow breathing produces less alveolar ventilation than slow deep breathing at the same minute respiratory volume (RMV) :

	Rapid shallow breathing	Slow deep
		breathing
RR	30/min	10/min
Tidal volume	200mL	600mL
RMV	6L	6L
Alveolar ventilation	(200-150)×30 =	(600-150)×10=
	50 ×30 =	450 ×10=
	1500mL	4500mL

Maximum voluntary ventilation (MVV) :largest volume of air that can be expired with effort per min: 120-180 L/min (measured for 15 S).